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The Problem

Evaluate approximately

IS (f ) :=

¨

S

f (x)dS

S is a smooth closed surface (2D) embedded in 3D (i.e. x ∈ R3).

Note:

Typically only simple integrands f (x) lead to explicit representations of the value of the

surface integral.

In application f (x) may be given only as values sampled at discrete locations.
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What Are the Applications?

In the case of spherical geometries applications include

geophysics

optics

numerical weather prediction

where integrated quantities such as

total energy

total radiance

average temperature

are required by themselves or to supplement systems of
partial differential equations.

For other geometries we imagine similar uses along with

Surface areas

Volumes

etc.
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Approximating Integrals in 1D

Rectangular Approximations

On each of the N subintervals construct a

constant function equal to f at the midpoint

(creating many rectangular areas).

I[a,b](f ) ≈
N−1∑
i=0

(b − a)

N
· f
(

xi + xi+1

2

)

Trapezoidal Approximations

On each of the N subintervals construct a

line passing through f at the endpoints (cre-

ating many trapezoidal areas).

I[a,b](f ) ≈
(b − a)

N
·

1 · f (x0) +

N−1∑
i=1

2 · f (xi ) + 1 · f (xN )
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Extending the Approximation Idea to Spheres

In either case we approximate the integral in 1D by

I[a,b](f ) =

b̂

a

f (x)dx ≈
N∑
i=0

wi f (xi ),

where

xi , i = 0, 1, 2, . . . ,N, are discrete points in [a, b], and

wi depend on

the locations of xi
the approximation chosen for f over each subinterval, not on f itself

Goal:

Find Wi , i = 1, 2, . . . ,N, such that

IS (f ) =

¨

S

f (x)dS ≈
N∑
i=1

Wi f (xi )

where

xi , i = 1, 2, . . . ,N, are discrete points on S

Wi depend on

the locations of the points xi
the approximation chosen for f , not on f itself
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Numerical Considerations

Required accuracy– How many points N do we need?

Construction of node–sets– How do we place N points on the surface?

Computational cost/run time– For a given N, how long does it take to
find the Wk? Can we distribute the cost to any number of processors?

Storage requirements– For a given N, how much memory (RAM) is
needed to find the Wk?
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RBF Interpolation

RBF interpolation of a function f (x) at a set of points {xi}Ni=1 (all in Rd ) is accomplished by
enforcing

f (xk ) ≈ s(xk ) :=
N∑
i=1

cRBFi φ(ri (xk ))

The interpolant is constructed by solving the linear system

AcRBF :=


φ(r11) φ(r12) · · · φ(r1N )
φ(r21) φ(r22) · · · φ(r2N )

.

.

.

.

.

.
. . .

.

.

.
φ(rN1) φ(rN2) · · · φ(rNN )




cRBF1

cRBF2

.

.

.

cRBFN

 =


f (x1)
f (x2)

.

.

.
f (xN )

 =: f

(with rji =
∥∥xj − xi

∥∥
2
), which comes from satisfying the interpolation conditions

The matrix A can be shown to be nonsingular in the case of GA, MQ, and IMQ RBF

interpolants (see, e.g., M.D. Buhmann. “Radial basis functions.” Acta Numerica, pages

1–38, 2000).

In the case of even and odd powers the matrix (and interpolation problem) must be

supplemented by multivariate polynomial terms.
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RBF Interpolation with Polynomial Terms

When multivariate polynomial terms must be included the interpolant is modified to be

f (x) ≈ ŝ(x) =
N∑
i=1

cRBFi φ(ri (x)) +
M∑
l=1

cml πl (x),

where {πl}Ml=1 is the set of all polynomial terms up to degree m.

In R2, M = (m+1)(m+2)
2

and this set includes the terms

1︸︷︷︸, x, y︸︷︷︸, x2
, xy, y 2︸ ︷︷ ︸, x3

, x2y, xy 2
, y 3︸ ︷︷ ︸, . . . , xm, xm−1y, xm−2y 2

, . . . , x2ym−2
, xym−1

, ym︸ ︷︷ ︸ .
Once augmented, the linear system becomes

Âĉ =

[
A Pm

(Pm)T 0

] [
cRBF

cm

]
=

[
f
0

]
= f̂ where cm =

[
cm1 cm2 · · · cmM

]T

and (again, in R2)

Pm =


1 x1 y1 x2

1 x1y1 y 2
1 · · · xm1 xm−1

1 y1 xm−2
1 y 2

1 . . . x2
1 y

m−2
1 x1y

m−1
1 ym1

1 x2 y2 x2
2 x2y2 y 2

2 · · · xm2 xm−1
2 y2 xm−2

2 y 2
2 . . . x2

2 y
m−2
2 x2y

m−1
2 ym2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

1 xN yN x2
N xN yN y 2

N · · · xmN xm−1

N
yN xm−2

N
y 2
N . . . x2

N ym−2

N
xN ym−1

N
ymN

 .

The last M equations come from the conditions

N∑
i=1

cRBFi πl (xi ) = 0, l = 1, 2, . . . ,M.
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Proposed Algorithm Steps

Given: N nodes on the surface, S , and a
(flat) triangulation, T , of the node set

1 For each of the flat triangles in T , find a

projection point.

2 Project a neighborhood (on S) of the three

vertices of the triangle into the plane

containing the vertices, including n nodes from

SN .

3 Find quadrature weights over the local

projected node set for the definite integral over

the projected central flat planar triangle.

4 Convert quadrature weights in each plane to

corresponding weights for the surface.

5 Combine the weights for the individual curved

triangles to obtain the full weight set for the

surface.

Concept Illustration
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Initialization

Given a set SN := {xi}Ni=1 ⊂ S, we associate to the set T = {tAkBkCk
}Kk=1 of flat triangles a set

of curved triangles, T = {τAkBkCk
}Kk=1, such that

the curved triangle vertices are the elements of SN ,

the curved triangle edges are projections of the flat triangle

edges to the surface,

no curved triangle contains an element of SN other than its

vertices,

the interiors of the curved triangles are pairwise disjoint, and

the union of the set T covers S .

Flat Triangles in T

Curved Triangles in T

The requirements on T allow

IS (f ) =

¨

S

f (x)dS =
K∑

k=1

¨

τAkBkCk

f (x)dS
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Step 1: Find a Projection Point

For each edge of a flat triangle in T define a unique

“cutting” plane so that both of the two triangles

containing a given edge will define the same plane.

The cutting plane along the edge AkBk of triangle
tAkBkCk

is defined to contain the edge and to be par-
allel to

nAkBk
=

1

2

(
nAkBkCk

+ sign
(
nTAkBkCk

nAkBkEk

)
nAkBkEk

)
.

The projection point, xOk
, is the intersection of the three cutting planes
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Step 2: Project Locally to a Plane

Local projection of a point x on S into a plane occurs

in 4 steps

1 Determine the intersection of the plane

containing the triangle and the line through

projection point in the direction of
(
x− xOk

)
.

2 Translate the projection point to the origin in

3D and rotate the coordinate system so that

the normal of the current triangle points

vertically.

3 Drop the third coordinate.

4 Translate so that the midpoint of the current

triangle is at the origin in 2D.

These three steps can be completed using

χk =

[
1 0 0
0 1 0

]
Rk

1

nAkBkCk
·
(
x− xOk

) (nAkBkCk
×
((
x− xOk

)
×
(
xMk
− xOk

)))
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Projection and Change of Variables

The projection amounts to a local parameterization and a change of variables in the integral
over τAkBkCk

, so that

IS (f ) =
K∑
k=1

¨

τAkBkCk

f (x)dS

=
K∑
k=1

¨

tAkBkCk

f (x(χk ))
nPk
· (x(χk )− xOk

)

nS (x(χk )) · (x(χk )− xOk
)

(
nAkBkCk

· (x(χk )− xOk
)

nAkBkCk
· (xAk

− xOk
)

)
2

dA,

where

nS (x) :=
∇h(x)

‖∇h(x)‖2

or nS (x) :=
∂
∂u

x(u, v)× ∂
∂v

x(u, v)∥∥∥ ∂∂u x(u, v)× ∂
∂v

x(u, v)
∥∥∥

2

and

nPk
:=

nAkBkCk∥∥∥nAkBkCk ∥∥∥2

.

If a global parameterization, x(u, v), of S is not available, then the local projection x(χk )

provides a local parameterization that is known at x(χk,j ), j = 1, 2, . . . , n.
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Step 3: Find Quadrature Weights Locally in the Plane

After projecting into the plane we consider evaluating

ItAkBkCk
(g) :=

¨

tAkBkCk

g (χk ) dA

Notice: integrating the RBF interpolant of g (χk )

ItAkBkCk
(g) ≈ ItAkBkCk

(ŝ) =ItAkBkCk

 n∑
j=1

cRBFj φ
(
rj (χk )

)
+

M∑
l=1

cMl πl (χk )


=

n∑
j=1

cRBFj ItAkBkCk

(
φ
(
rj (χk )

))
+

M∑
l=1

cMl ItAkBkCk
(πl (χk ))

=ĉT Î,

where

Î =

[
IRBF

Im

]
, IRBF =



ItAkBkCk
(φ (r1))

ItAkBkCk
(φ (r2))

.

.

.
ItAkBkCk

(φ (rn))

 , and Im =



ItAkBkCk
(π1)

ItAkBkCk
(π2)

.

.

.
ItAkBkCk

(πM )

 .
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(ŝ) =ItAkBkCk

 n∑
j=1

cRBFj φ
(
rj (χk )

)
+

M∑
l=1

cMl πl (χk )


=

n∑
j=1

cRBFj ItAkBkCk

(
φ
(
rj (χk )

))
+

M∑
l=1

cMl ItAkBkCk
(πl (χk ))
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Step 3: Find Quadrature Weights Locally in the Plane

Recall that if Â is invertible, then ĉ = Â−1ĝ. So

ItABC (g) ≈ ItABC (ŝ) =ĉT Î

=
(
Â−1 ĝ

)T
Î

=ĝT
((

Â−1
)T

Î

)
=ĝT

((
ÂT
)−1

Î

)
=ĝT ŵ

Here ÂT ŵ = Î and ĝ =
[

g
(
χk,1

)
g
(
χk,2

)
· · · g

(
χk,n

)
0 · · · 0

]T
Let w be the first n entries in the solution of this system of equations so that we have

ItAkBkCk
(g) ≈ gTw =

n∑
j=1

wk,j g
(
χk,j

)
.
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Step 3: Find Quadrature Weights Locally in the Plane

Finding the weights wk,j , j = 1, 2, . . . , n requires two pieces of information

1 The (hopefully closed form) integrals (j = 1, 2, . . . , n and l = 1, 2, . . . ,M)

ItAkBkCk

(
φ
(
rj
))

=

¨

tAkBkCk

φ
(
rj (χk )

)
dA

and

ItAkBkCk
(πl ) =

¨

tAkBkCk

πl (χk ) dA (Elementary)

2 The solution of the linear system ÂT ŵ = Î

For the RBF terms, consider

integration over right triangles

only:

A
B

C

O

D

E

F
A

B

C O

D
E

F

Define (minding the order of AkBkCk and likewise for the
other triangles)

stAkBkCk
:= sign

(([
0 −1
1 0

] (
χk,Bk

− χk,Ak

))
·
(
χk,Ck

− χk,Ak

))
.

The integral over an arbitrary triangle is the sum of

integrals over six right triangles:

ItAkBkCk
(φ) =stAkBkCk

(
stOkAkDk

ItOkAkDk
(φ) + stOkDkBk

ItOkDkBk
(φ)+

stOkBk Ek
ItOkBk Ek

(φ) + stOk EkCk
ItOk EkCk

(φ)+

stOkCk Fk
ItOkCk Fk

(φ) + stOk FkAk
ItOk FkAk

(φ)

)
.
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Integrating RBFs Over Right Triangles

Integrals of Popular RBFs Over Right Triangles

φ(r)

ά

0

β
α

[
1 0

]
χk´

0

φ
(
‖χk‖2

)
dA

(0,0) (α,0)

(α,β)

r 3 1
40
α
(

3α4 sinh−1
(
β
α

)
+ β

√
α2 + β2

(
5α2 + 2β2

))
r 5 1

336
α
(

15α6 sinh−1
(
β
α

)
+ β

√
α2 + β2

(
33α4 + 26α2β2 + 8β4

))
r 2 ln(r) 1

144
α
(

24α3 tan−1
(
β
α

)
+ 6β

(
3α2 + β2

)
ln
(
α2 + β2

)
− 33α2β − 7β3

)
e−(εr )2

1

2ε2

[
tan−1

(
β
α

)
− 2πT

(√
2αε, β

α

)]
(Note: T is the Owen’s T function)

√
1 + (εr)2

1

12ε2

[
2αβε2

√
ε2 (α2 + β2) + 1 + 6 tan−1

(
α
β

)
+ π − 6 tan−1

(
α
√
ε2(α2+β2)+1

β

)
+ · · ·

2αε
(
α2ε2 + 3

)
sinh−1

(
βε√
α2ε2+1

)
+ 2i ln(−α + iβ) + · · ·

−i

ln

 β

(√
ε2(α2+β2)+1−βε

)
+α2(−ε)+iα

αε−i

 + ln

 β

(√
ε2(α2+β2)+1+βε

)
+α2ε+iα

αε+i





1√
1+(εr )2

1

ε2

[
− tan−1

(
α
√
ε2(α2+β2)+1

β

)
+ αε sinh−1

(
βε√
α2ε2+1

)
+ tan−1

(
α
β

)]

Closed form expressions exist!
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Finding n Nearest Neighbors

When approximating g (χk ) we interpolate over n points{
χk,j

}n
j=1

These points are taken to be the projections of the n nearest

quadrature nodes (in SN) to the midpoint of tAkBkCk
.

For each midpoint, the n nearest neighbors in Euclidean distance are found at the initialization

of the proposed method using the kd-tree algorithm in O(N n log N) operations (see e.g., J. H.

Friedman, J. L. Bentley, and R. A. Finkel. “An algorithm for finding best matches in logarithmic

expected time.” ACM Trans Math Softw, 3(3), 1977).
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Steps 4 and 5: Convert and Combine Quadrature Weights

Applying step 3 to the double integral over each of the triangles tAkBkCk
gives (with

xk,j := x(χk ))

¨

τAkBkCk

f (x)dS =

¨

tAkBkCk

f (x(χk ))
nPk
· (x(χk )− xOk

)

nS (x(χk )) · (x(χk )− xOk
)

(
nAkBkCk

· (x(χk )− xOk
)

nAkBkCk
· (xAk

− xOk
)

)
2

dA

≈
n∑
j=1

wk,j f (xk,j )
nPk
· (xk,j − xOk

)

nS (xk,j ) · (xk,j − xOk
)

(
nAkBkCk

· (xk,j − xOk
)

nAkBkCk
· (xAk

− xOk
)

)
2

.

Hence,

IS (f ) ≈
K∑
k=1

n∑
j=1

wRBF
k,j f (xk,j )

nPk
· (xk,j − xOk

)

nS (xk,j ) · (xk,j − xOk
)

(
nAkBkCk

· (xk,j − xOk
)

nAkBkCk
· (xAk

− xOk
)

)
2

.

Weights in the plane and on the surface differ only by a factor.

Let Ki , i = 1, 2, . . . ,N be the set of all pairs (k, j) such that χk,j 7→ xi . Then the surface

integral over S can be written as

IS (f ) ≈
N∑
i=1

 ∑
(k,j)∈Ki

wk,j

nPk
· (xk,j − xOk

)

nS (xk,j ) · (xk,j − xOk
)

(
nAkBkCk

· (xk,j − xOk
)

nAkBkCk
· (xAk

− xOk
)

)
2
 f (xi ) =

N∑
i=1

Wi f (xi ) =: ĨS2 (f ).
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Results and Comparisons

Results are presented for quasi-uniform node sets on three test surfaces and three test

integrands.

Note: Present method default settings when computing quadrature weights for each spherical
triangle:

φ(r) = r7

80 nearest neighbors

Bivariate polynomial terms up to degree 7

Worst case error shown when the test function has been randomly rotated 1, 000 times.
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Test Surfaces

We consider the rotated Cassini Ovals defined by

h(x) = h(x, y, z) = (x2 + y 2 + z2)2 − 2λ2b2(x2 − y 2 − z2) + b4(λ4 − 1) = 0

which can also be parameterized explicitly via

x(θ, φ) = ρ(φ)cos(φ)

y(θ, φ) = ρ(φ)sin(φ)sin(θ)

z(θ, φ) = ρ(φ)sin(φ)cos(θ)

ρ(φ) = b

√√
1 + λ4(cos2(2φ)− 1) + λ2cos(2φ)

θ ∈ [0, 2π)

φ ∈ [0, π]

In all cases b is chosen so that the surface area is equal to 1 by finding numerically the root of

R(b) = 1− 8

b
√
λ2+1ˆ

0

√
b
√

b2+4λ2x2−λ2b2−x2ˆ

0√√√√√ λ2b6 − b3(b2 + 4λ2x2)
3
2 + 4λ2b3x2

√
b2 + 4λ2x2

λ2b6 − b3(b2 + 4λ2x2)
3
2 + 4λ2b2x4 + 4λ4b4x2 + b4x2 + b4y 2 + 4λ2b2x2y 2

dydx
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Test Integrands

Integrand:

f1(x) =
1

3
x ·

∇h(x)

‖∇h(x)‖2

Features: Infinitely smooth, computes the

volume of the surface of revolution.
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Test Integrands

Integrand:

f2(x) =
2

π
tan−1(100eT3 x)

Features: Infinitely smooth with a steep gra-

dient near where the third coordinate of x is

zero.
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Test Integrands

Integrand:

f3(x) = sign(eT3 x)

Features: Discontinuous where the third co-

ordinate of x is zero.
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Timing Results

All computations were performed in Matlab on machines with dual Intel Xeon E5-2687W 3.1

GHz, 8-core processors.

Figures indicate for the proposed method:

O(N) cost and memory for up to at least millions of nodes

O(N log N) cost is expected when the nearest neighbor search starts to dominate the

computation.

‘Embarrassingly parallel’ scalability with number of cores
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Conclusions

A high order accurate algorithm has been developed for quadrature over smooth closed

surfaces

The node sets can feature any types of density variations (e.g. local refinement in certain

areas, etc.), demonstrated for the sphere in “Numerical quadrature over the surface of a

sphere” (J.A. Reeger and B. Fornberg)

The total cost is O(N log N) operations and O(N) memory for finding weights for N

nodes.

The algorithm is ‘embarrassingly parallel’, making it trivial to use any number of available

processors.

Even on a standard PC, it can be run for N-values in the millions. This eliminates the

need for tabulating weights for specific node distributions.

Publications:
J. A. Reeger and B. Fornberg. “Numerical quadrature over the surface of a sphere.”
Stud. Appl. Math., 137(2): 174-188, 2016.
J. A. Reeger, B. Fornberg, and M. L. Watts. “Numerical quadrature over smooth, closed
surfaces.” P. Roy. Soc. Lon. A Mat., 472:20160401, 2016. (doi:10.1098/rspa.2016.0401).
J. A. Reeger and B. Fornberg. “Numerical quadrature over smooth surfaces with
boundaries.” submitted to J. Comput. Phys.

Implementations Available: http://www.jonahareeger.com (MATLAB, Julia, and Python)
Jonah A. Reeger (AFIT) Quadrature Over Smooth Surfaces 26 / 26



Conclusions

A high order accurate algorithm has been developed for quadrature over smooth closed

surfaces

The node sets can feature any types of density variations (e.g. local refinement in certain

areas, etc.), demonstrated for the sphere in “Numerical quadrature over the surface of a

sphere” (J.A. Reeger and B. Fornberg)

The total cost is O(N log N) operations and O(N) memory for finding weights for N

nodes.

The algorithm is ‘embarrassingly parallel’, making it trivial to use any number of available

processors.

Even on a standard PC, it can be run for N-values in the millions. This eliminates the

need for tabulating weights for specific node distributions.

Publications:
J. A. Reeger and B. Fornberg. “Numerical quadrature over the surface of a sphere.”
Stud. Appl. Math., 137(2): 174-188, 2016.
J. A. Reeger, B. Fornberg, and M. L. Watts. “Numerical quadrature over smooth, closed
surfaces.” P. Roy. Soc. Lon. A Mat., 472:20160401, 2016. (doi:10.1098/rspa.2016.0401).
J. A. Reeger and B. Fornberg. “Numerical quadrature over smooth surfaces with
boundaries.” submitted to J. Comput. Phys.

Implementations Available: http://www.jonahareeger.com (MATLAB, Julia, and Python)
Jonah A. Reeger (AFIT) Quadrature Over Smooth Surfaces 26 / 26


	0.0: 
	anm0: 
	1.0: 
	anm1: 
	2.0: 
	anm2: 
	3.0: 
	anm3: 
	4.0: 
	anm4: 
	5.0: 
	anm5: 
	6.0: 
	anm6: 
	7.0: 
	anm7: 
	8.0: 
	anm8: 
	9.0: 
	anm9: 
	10.0: 
	anm10: 
	11.0: 
	anm11: 
	12.0: 
	anm12: 
	13.0: 
	anm13: 


